
mpQUAD: Multipath Quad TCP Congestion
Control in FANETs

Neethu Subash∗, B.Nithya, Vipul Patel, and Rahul Bangar
∗Department of Computer Science and Engineering, National Institute of Technology, Tiruchirappalli, Tamilnadu, India

Abstract—AIMD (Additive Increase Multiplicative Decrease)
and CUBIC (Cubic Congestion Control) are the two commonly
used algorithms for network congestion control in the UAV
(Unmanned Aerial Vehicle). AIMD and CUBIC can control the
data transfer rate between the UAV and the ground station or
other UAVs in a swarmed network. This is particularly important
for real-time applications using flying adhoc networks (FANET),
such as surveillance or monitoring, where timely data delivery is
critical. Multiptah TCP utilizes individual subflows to implement
congestion control. Nevertheless, the default congestion manage-
ment mechanism for subflows in an MPTCP connection uses a
linked increase adaptation technique to prevent the congestion
window from rapidly expanding due to subflows independently
developing their own congestion windows. The throughput of
MPTCP connections may decline if fast algorithms like CUBIC
TCP are employed in high speed congested network. This
work proposes mpQUAD, a novel CUBIC TCP-based high-speed
congestion management technique for MPTCP. It exposes specific
control parameters of the algorithm to tweak the systems TCP
congestion control behavior. The sender’s congestion window
can be controlled by changing the multiplicative factor and
the rate at which it grows, by the user. The throughputs of
MPTCP flows decrease in the conventional congestion control
algorithms. The limited bandwidth and high mobility of FANETs
can cause significant delay, which the proposed congestion control
algorithm mpQUAD can mitigate.

Index Terms—congestion control, mpCUBIC, mpQUAD,
MPTCP, FANET

I. INTRODUCTION

Controlling congestion is essential for ensuring efficient and
effective use of FANET. FANET [1] is a type of wireless ad-
hoc network consisting of unmanned aerial vehicles (UAVs)
or drones that communicate wirelessly. FANETs are often
used in disaster management, military operations, and environ-
mental monitoring applications [2]. These networks operate
in a dynamic and constantly changing environment, which
makes it challenging to establish and maintain communication
between the nodes. One of the major issues that FANETs face
is congestion [3] which occurs when the network becomes
overloaded with traffic, leading to delays, packet loss, and
reduced network performance. In FANETs, congestion can be
caused by several factors, including limited bandwidth, high
node density, and mobility-induced changes in network topol-
ogy. Controlling congestion in FANETs is critical to ensure
reliable communication and efficient use of network resources.
However, in FANETs TCP’s congestion control mechanism
can reduce network throughput and increase end-to-end delay

Corresponding author: Neethu Subash (email: neethu.subash@gmail.com.

due to several factors. One of the major challenges of using
TCP in FANETs is the high packet loss rate due to interfer-
ence, channel fading, and mobility-induced changes in network
topology. TCP’s congestion control algorithm interprets packet
loss as an indication of network congestion and slows the
transmission rate, leading to poor network performance. In
addition, TCP’s congestion control mechanism can lead to
excessive delay in FANETs due to the high round-trip time
and variable network conditions. TCP’s congestion control
algorithm slows down the transmission rate when packet loss
occurs, and it takes time for TCP to increase the transmission
rate back to the optimal level. This delay can be significant
in FANETs due to the high round-trip time and variable
network conditions, leading to reduced network throughput
and increased end-to-end delay. To overcome these challenges,
modifications have been proposed to adapt TCP’s congestion
control mechanism to FANETs. These modifications aim to
improve TCP’s performance in FANETs by accounting for
the unique characteristics of wireless communication, such
as high packet loss rate, high round-trip time, and variable
network conditions. These modifications include cross-layer
design, congestion control algorithms, window-based conges-
tion control, and hybrid approaches. TCP uses congestion
control algorithms CUBIC [4], mVeno [5] etc to regulate
data flow and adjust the transmission rate based on network
conditions. Single path TCP and MPTCP (Multi-path TCP) [6]
are two different transmission protocols used in FANETs for
data communication. Single path TCP is the traditional TCP
protocol that uses a single path to transmit data between two
endpoints, while Multi-path TCP uses multiple paths simulta-
neously to improve network performance. From a performance
point of view, Multi-path TCP can provide several benefits
compared to Single path TCP in FANETs, including:

• Improved network throughput: Multi-path TCP uses mul-
tiple paths to transmit data simultaneously, which can
increase the network throughput and improve overall
network performance. This is particularly beneficial in
FANETs, where bandwidth is limited, and congestion is
common.

• Better reliability: Multi-path TCP uses multiple paths to
transmit data, which improves network reliability by re-
ducing the impact of packet loss and network congestion.
If one path is congested or fails, data can be rerouted
through another available path, reducing the risk of data

loss.
• Reduced end-to-end delay: Multi-path TCP can reduce

end-to-end delay in FANETs by using multiple paths to
transmit data, which can reduce the impact of network
congestion and packet loss. This can improve real-time
application performance, such as video streaming and
VoIP.

However, there are also some challenges associated with
using Multi-path TCP in FANETs, including:

• Increased complexity: Multi-path TCP is a more complex
protocol than Single path TCP, which can make it more
difficult to implement and maintain in FANETs.

• Increased energy consumption: Multi-path TCP uses mul-
tiple paths to transmit data, which can increase en-
ergy consumption in FANETs, particularly in resource-
constrained nodes such as UAVs.

• Path selection: Multi-path TCP requires efficient path
selection mechanisms to choose the best available paths
for data transmission. In FANETs, the dynamic and
fast-changing network topology can make path selection
challenging.

CUBIC is a congestion control algorithm that aims to
achieve fast and stable throughput. It is designed to support
the transfer of large volumes of data and is considered a fast
congestion control algorithm. In CUBIC, the sender adjusts the
congestion window size based on receiving acknowledgments
(ACKs) from the receiver. On receiving an ACK, CUBIC
calculates a target window size and adjusts the congestion
window towards this target. Multi path CUBIC supports
multiple sub flows and uses a cubic function to estimate
network conditions and adjusts the congestion window size
accordingly. While mpCUBIC is effective congestion control
algorithms [7] in FANETs, there are several limitations to
using CUBIC and mpCUBIC over mpQUAD:

• Limited support for multi-path transmission: CUBIC was
designed for use in single-path networks and does not
support multi-path transmission. In contrast, mpQUAD
is specifically designed for multi-path networks and can
better handle the complexities of FANETs.

• Higher delay and packet loss: In FANETs, there can be
significant variations in the delay and packet loss rates on
different paths. CUBIC may not be able to adapt quickly
enough to these variations, leading to higher delays and
packet loss. mpQUAD can handle these variations better
and provide better performance in FANETs.

• Limited scalability: As the number of UAVs in a FANET
increases, the network becomes more complex and dif-
ficult to manage. CUBIC may not be able to scale up
to handle large FANETs, while mpQUAD is designed to
be scalable and can handle larger networks more effec-
tively. The proposed work mpQUAD is based on CUBIC
allows to achieve fast convergence to high throughput
and responds quickly to changes in network conditions,
leading to improved network performance compared to
other congestion control algorithms.

To address these limitations, mpQUAD is designed to support
the fast transfer of large volumes of data in FANETs. By
dynamically adjusting the congestion window size based on
the reception of ACKs and using a QUAD function to estimate
network conditions, mpQUAD can achieve fast and stable
throughput, improving network performance. The congestion
window size as a function:

W (time) = Q(t−K)4 +Wmax (1)

where Q is the Quadruple parameter, t is the elapsed time
from the last congestion window size reduction refers to the
time that has passed since the congestion window size was
last decreased due to network congestion. This elapsed time
is used to calculate the congestion window size. The idea
behind using this elapsed time is to gradually increase the
congestion window size over time, as long as the network
conditions allow for it, to make better use of the available
bandwidth and prevent congestion from occurring. Wmax is
when the most recent packet loss event occurred. K represents
the time it takes for the congestion window size to reach its
maximum value after a reduction due to network congestion.
As the algorithm increases the window size as the network
reaches saturation. This property makes mpQUAD highly
scalable and efficient in networks with large capacity and delay
products and multiple pathways to improve performance and
increase redundancy. The paper discusses the implementation
of the mpQUAD algorithm as a Linux kernel module and its
analysis. The module’s unique feature allows specific QUAD
congestion window function control parameters to be exposed
to user space through a graphical user interface (GUI). This
allows users to manipulate these parameters in real-time and
affect the behavior of TCP congestion control. A simulation
environment was created to analyze the behavior of mpQUAD.
The simulation creates a bottleneck link, and multiple TCP
flows are started to share the link. The captured data is
visualized to analyze the congestion window size, throughput,
and queueing delays. This helps to evaluate the performance of
the mpCUBIC algorithm, mpQUAD and its ability to achieve
fast and stable throughput in computer networks. mpQUAD
extends the mpCUBIC algorithm by incorporating a new
estimator to improve network performance. The new estimator
uses a quadratic function to more accurately reflect network
conditions, resulting in improved congestion control and better
overall network performance.

The paper presents experimental results demonstrating the
superiority of the mpQUAD algorithm over mpCUBIC. The
subsequent sections of this paper will be organized as, in
section 2, related work is investigated and examine various so-
lutions that have been previously proposed. Section 3 provides
an in-depth explanation of the mpQUAD algorithm. Section 4
presents the results obtained by simulating mpQUAD. Section
5 is the conclusion, where the work is summarized with
findings and future scope.

II. RELATED WORK

The study of congestion control has been an active area of
research for many years, with several algorithms developed to
address the issue of network congestion. One such algorithm
is the CUBIC congestion control algorithm, widely used in
both wired and wireless networks. However, CUBIC has been
shown to have some limitations, particularly in wireless net-
works with high loss rates. As a result of this, new algorithms
have been created to enhance the effectiveness of CUBIC
and other congestion control algorithms in wireless networks.
This section summarizes the research on congestion control in
FANET and explore its constraints. The article [5] suggests a
new congestion control algorithm called mVeno, which aims
to enhance the performance of MPTCP in wireless commu-
nication networks with random packet loss. MPTCP enables
multiple paths to be used in a TCP connection simultaneously.
However, the current congestion control algorithms used are
loss-based and prefer routes with low failure rates, which can
negatively impact wireless network performance. The mVeno
approach dynamically adjusts the transmission rate of each
subflow, utilizing congestion data from all subflows associated
with the TCP connection. The mVeno technique decouples
the congestion control for each subflow, enabling data to be
transmitted simultaneously over multiple channels. The new
congestion control algorithm is designed to overcome the
limitations of the current loss-based algorithms, improving
the performance of MPTCP in wireless networks with high
levels of random packet loss. The algorithm [8] is a congestion
control algorithm designed to improve the performance of
TCP in high bandwidth-delay product networks. It extends the
Cubic TCP congestion control mechanism to support multiple
network paths. Balances traffic between multiple paths during
bottlenecks to ensure fair sharing with other TCP variants such
as standard TCP, Cubic, and MPTCP. This helps to improve
resilience to link failures and reduce the time for restoring data
rates. The algorithm is handy for high-bandwidth applications
that require reliability, such as telemedicine conferencing in
disaster-affected areas. However, one of the challenges with
multipath transport protocols is the issue of sequence number
space, which involves the flow or multipath link level. A
single TCP stream may be divided over many pathways in
MPTCP [9]. It offers clear advantages in terms of dependabil-
ity and performance. Linux-based distributions have MPTCP
implemented, which can be installed and utilised in both
practical and hypothetical situations. The results reveal that the
Balanced Linked Adaptation method outperforms the others
when the pathways are shared with heavy traffic, which is
not allowed by MPTCP. In contrast, Alias Linked Increase
Congestion Control approach beats the others under average
traffic load. The Linux operating system is used to measure the
throughput of various situations. The results of all cases are
compared, and the effectiveness of various MPTCP congestion
control methods is evaluated. An Approach [10] to Reinforce
Multipath TCP with Path-Aware Information Mp TCP, which
allows multiple wireless connections, is a great way to cre-

ate multi-homing devices on cellular networks. Suppose the
throughput of MPTCP over a divergent channel is lower than
ideal for single-pass TCP. In that case, there is a significant
problem of negative aggregation benefit that MPTCP with PA
can solve. The work demonstrates the effectiveness of the
recommended strategy through the recent installation of the
so-called MPTCP-LA (that is, loss-aware MPTCP). To keep
the overall power positive, MPTCP-LA temporarily switches
MPTCP transmissions on the route to sleep mode when the
observed loss at the device exceeds a certain threshold. D-
LIA [11] is a dynamic congestion control algorithm designed
specifically for MPTCP, which can adaptively adjust the
congestion window size and control the transmission rate
based on the network congestion level. It achieves improved
performance and fairness in multi-homed networks. Need to
improve throughput in highly congested FANET scenarios.
The paper on [12] proposes a bidirectional congestion control
transport protocol (BCCTP) for the Internet of Drones (IoD)
that utilizes a congestion window algorithm and a selective
repeat mechanism to mitigate congestion and ensure reliable
data delivery. BCCTP improves network utilization and re-
duces packet loss in IoD scenarios. However, when the number
of UAVs are increased, the performance degrades drastically.
mpCUBIC [4] is a congestion control algorithm for Multipath
TCP that extends the well-known CUBIC algorithm to handle
multiple network paths, improving overall throughput and
fairness. It dynamically adapts its congestion window and
pacing rate based on each path’s available bandwidth and
delay. But mpCUBIC may not perform optimally in networks
with highly asymmetric paths or paths with different loss
characteristics. Factors that lead to improvising congestion
control algorithm for FANET include,

• Unresponsive to sudden network changes: Most of the
congestion control algorithm may take longer to respond
to sudden network changes, such as congestion or traffic
spikes, which can result in reduced network performance.

• May result in long queue delays: Due to long queue
delays, especially in high-speed networks, resulting in
higher latency and reduced throughput.

III. PROPOSED WORK

The main aim of the proposed congestion control mecha-
nism is to improve throughput by minimizing the congestion.
A multi path flow should perform well as a single TCP flow
that would be on the best of its available paths. An MPTCP
connection should use individual sub-flow [13] dependent on
the congestion on the route.The mpQUAD determines the
congestion window value using the QUAD function of the
last packet loss or detected congestion using equation 1.

A. Proposed Model of mpQUAD

The proposed algorithm uses the mpQUAD function to
balance fast initial growth during the slow start phase and
gradual development during the congestion avoidance phase.
It works by controlling the rate at which data is sent, using a
mathematical formula to adjust the sending rate based on the

congestion in the network. To do this, mpQUAD keeps track
of the amount of data currently in transit in the network, and
uses this information to adjust the sending rate accordingly. If
the network is congested, mpQUAD will slow the sending rate
to prevent further congestion. If the network is less crowded,
mpQUAD will speed up the sending rate to maximize data
transfer. In the initial phase of data transmission called ”slow
start”, the size of the congestion window increases rapidly and
exponentially, doubling after each round trip time. Once the
window size reaches a specific limit, the algorithm shifts to
the ”congestion avoidance” phase. In this phase, the congestion
window grows at a slower rate and is determined by a mathe-
matical function that takes into account the time elapsed since
the last congestion event. The QUAD TCP algorithm employs
a quad function that exhibits a concave curve during slow start
and a convex curve during congestion avoidance. The convex
curve reflects the gradual growth of the congestion window as
the network capacity gets fully utilized. Overall, the quad TCP
algorithm is designed to provide efficient and stable congestion
control in TCP networks, ensuring that the network does
not become congested and packets are transmitted optimally.
From equation 1, K can be equated as in equation 2

K = 4

√
Wmaxβ

Q
(2)

where Q is the quad parameter, K is the period that the above
function takes to increase W to Wmax when there is no other
loss event, β is the reduction in the window at a quick fast
retransmit event. To evaluate whether the protocol is in the
TCP area after receiving an acknowledgment, the TCP window
size is analyzed to the elapsed time t. This analysis involves
the use of a multiplicative factor and an additive factor. The
multiplicative factor increases the window size by a certain
percentage every RTT. In contrast, the additive factor increases
the window size by a fixed amount after every RTT.

Wtcp(t) = Wmax

[
1− β +

3β

2− β

t

RTT

]
(3)

The cwnd setting is Wtcp at each ACK receipt if it is less than
Wtcp. If cwnd is smaller than the Wtcp and the protocol is not
in the TCP region, concave area of the protocol, then cwnd is
increased by equation4.

W (t+RTT)

cwnd
− 1 (4)

If cwnd is more than Wtcp, then the protocol is in convex
region and the increment in cwnd remains the same as above.
In the event of a packet loss, cwnd is reduced by a factor of β.
A value lower than 0.5 results in slow convergence so adaptive
adjustment of β is an issue that the interactive GUI resolves.
The congestion control strategy for a single-path CUBIC flow
was covered in the introduction. Two CUBIC sub flows in
an MPTCP connection is considered. It is essential to prevent
the congestion window from expanding too quickly, which
might happen if the sub-flows grow their congestion windows
separately. A mpQUAD function whose cycle is one-half of

a balanced QUAD growth function also determines the total
congestion window size of an MPTCP connection i.e., K/2.
The improvements considered are:

• For a multi path connection, the packet loss period is
doubled.

• Overall cwnd size is set to Wmax, the largest window
size, shortly before a packet loss.

One sub flow’s congestion window size in mpQUAD is given
by:

W (t) =
1

F

[
E(

t

2
−K)4 +Wmax

]
(5)

The total window size [4] for one MPTCP connection for
a single cycle is given by:

Wmax(t) =

{
1

F

[
E(

t

2
−K)4 + E(

t+K

2
−K)4 + 2Wmax

]
,

when0 < t < K

1

F

[
E(

t

2
−K)4 + E(

t−K

2
−K)4 + 2Wmax

]
,

when0 < t < 2K

1) At t = 0, Wtotal(−0)(1− β) = Wtotal(+0) we obtain,[
E(−1

2
K)4 + 2Wmax

]
(1− β)

E =
16

8 + β
C

2) At t=2K, Wtotal(2K − 0)=Wmax, we obtain,

1

F

[
E(−−1

2
K)4 + 2Wmax

]
F =

16

8 + β

Upon substituting the values of E and F, for the cwnd
size of an mpQUAD subflow:

W (t) =

[
Q(

t

2
−K)4 +

16

8 + β
Wmax

]
(6)

Here, Q, t, K, β and Wmax are the mpQUAD param-
eters

In algorithm 1, cwnd and ssthresh represent the congestion
window size and slow start threshold, respectively. Variables
t, rtt, and ack represent the time elapsed since the start of
the connection, the round-trip time of the last packet, and the
number of acknowledged packets since the previous update,
respectively. The target variable represents the target queue
size in packets, while β, γ, and α represent the multiplicative
decrease factor, additive increase factor, and control param-
eter for mpQUAD, respectively. Finally, wmax means the
maximum congestion window size. The algorithm begins by
calculating the scaling factor k and estimating the bottleneck

Fig. 1. cwnd, ssthresh for mpCUBIC

Fig. 2. cwnd, ssthresh for mpQUAD

Algorithm 1 mpQUAD Congestion Control Algorithm
Input: initial cwnd cwnd, initial slow start threshold

ssthresh, time elapsed since the start of the connection t,
round-trip time of the last packet rtt, number of acknowl-
edged packets since the last update ack, target queue size
in packets target, multiplicative decrease factor β, additive
increase factor γ, control parameter for mpCUBIC alpha,
maximum congestion window size wmax.

Output: cwnd, ssthresh
Initialisation :
FUNCTION mpQUAD(cwnd, ssthresh, t, rtt, ack,
target, beta, gamma, alpha, wmax)
START
k ← (wmax

cwnd)
1
2

west ← cwnd · (targetack)
1
2

QUAD ← (west

k) + α · t
∆cwnd← QUAD − cwnd
Check if ∆cwnd > 0

Check if cwnd < ssthresh
cwnd← cwnd+min(∆cwnd, ack · γ)

Else
cwnd← cwnd+min(∆cwnd, γ)

ssthresh← max(cwnd · β, 2)
cwnd← ssthresh
cwnd, ssthresh
END FUNCTION

bandwidth west. It then computes the QUAD function and
the difference between the current congestion window size
and the quad value. If the difference is positive, the algorithm
enters the congestion avoidance phase and performs either
an additive increase during a slow start or an additive rise
during congestion avoidance. If the difference is negative, the
algorithm enters the congestion control phase and performs
multiplicative decrease by setting the cwnd and ssthresh to
appropriate values. The updated cwnd and ssthresh values are
returned at the end of the algorithm.

B. mpQUAD Behaviour

When two sub-flows are used in a multi path TCP con-
nection, and both subflows use mpQUAD TCP, the cwnd
behavior is designed to be balanced. When both sub-flows
go through a bottleneck link and experience packet loss due
to congestion, the cwnd of both subflows decreases similarly.
The time variation graph’s 4 black and red lines represent the
cwnd of the two sub-flows. The mpQUAD behavior can be
summarized as follows:

• At the beginning of the connection, the cwnd of both
sub-flows starts with the ssthresh and increases linearly
during the slow start phase.

• Following the initial slow start phase, cwnd of both
subflows transitions into the congestion avoidance phase,
during which it gradually increases at a slow pace through
a minor linear function.

• When packet loss is detected due to congestion, the cwnd
of both subflows is reduced similarly. However, due to
the difference in RTT of the two subflows, the cwnd of

Fig. 3. Throughput for two sub flow in mpCUBIC

Fig. 4. Throughput for two sub flow in mpQUAD

the subflow with a shorter RTT reduces faster than the
subflow with a longer RTT.

• As the cwnd of both subflows decreases, the congestion
avoidance phase is re-entered, and the cwnd of both
subflows starts to increase slowly again with a small
linear function.

• When congestion occurs again, the cwnd of both sub-
flows is reduced, and the process repeats. The aim is
to balance the cwnd of both subflows, so that neither
subflow dominates the network resources, and the per-
formance of the multi path TCP connection is optimized.

IV. PERFORMANCE EVALUATION

The simulation of the FANET is carried out using Mahi
Mahi simulator [14] for TCP flows and TCPTuner GUI [15].
The nodes chosen in the environment are dynamic. A 12Mbps
bottleneck uplink with a 117Kib drop-tail queue is set up
with an 80ms RTT. This arrangement enables to evaluate
the throughput of various TCP flows operating on different
protocols, as well as the throughput and delay of an individual
flow. In this section, first, the impact of the cwnd and ssthresh
values are discussed for mpCUBIC and mpQUAD and then

Fig. 5. Queuing Delay in mpCUBIC

Fig. 6. Queuing Delay in mpQUAD

their performance is analyzed in terms of throughput and
queueing delay.

A. Impact of Congestion Window Size and Slow Start Thresh-
old

In mpQUAD, the cwnd and ssthresh are two critical pa-
rameters used to control the rate at which data is sent in
the network. During the slow start phase of the algorithm,
the cwnd and ssthresh are initialized to their default values.
The cwnd is then increased linearly for each successful
transmission until the ssthresh is reached. At this point, the
algorithm enters the congestion avoidance phase, and the
cwnd is increased more slowly, following a quad function. If
congestion is detected, the cwnd is reduced, and the ssthresh
is set to half the current cwnd. This reduction helps to prevent
further congestion and to avoid TCP global synchronization.
The relationship between the cwnd and ssthresh in mpQUAD
is such that when the cwnd exceeds the ssthresh, the algorithm
switches from slow start to congestion avoidance mode. In
this mode, the cwnd is increased more slowly, and congestion
is avoided by reducing the cwnd in response to congestion
signals. When the cwnd is reduced due to congestion, the
ssthresh is also reduced, which limits the growth of the cwnd
in the future. This relationship between the cwnd and ssthresh
helps to regulate the congestion control mechanism and avoid
congestion collapse. Figure 1 and 2 depicts the nature of
congestion window size and slow start threshold for cubic
and mpQUAD respectively. The red traces indicates the the
link capacity in the graphs. Congestion window grows more
rapidly in cubic than mpQUAD, indicating network instability
or congestion, leading to increased packet loss. The QUAD
algorithm slows down and decrease the congestion window
to prevent further congestion and improve overall network
performance.

B. Throughput and Queueing-Delay

mpQUAD in fig4 has shown to have better throughput than
mpCUBIC TCP in fig 3. This is because mpQUAD uses
multiple paths and control parameters, which allows for better
utilization of available network resources and faster recovery
from congestion events. This results in more efficient use
of network bandwidth and higher throughput. The relative
performance of mpCUBIC and mpQUAD TCP indicate that,

under the dynamic nature of UAVs, mpQUAD outperforms
mpCUBIC.

In terms of queuing delay performance mpCUBIC figure5
has shown to outperform mpQUAD TCP in figure6. mpQUAD
uses multiple paths which allows for better utilization of avail-
able network resources and faster recovery from congestion
events. This results in lower queuing delay, which is the time
that a packet spends in a queue before being transmitted. On
the other hand, although mpCUBIC TCP uses a multi path,
but leads to suboptimal utilization of network resources and
slower recovery from highly congested events. This results in
higher queuing delay and can lead to longer response times and
reduced throughput. Overall, mpQUAD’s ability to efficiently
use multiple paths and congestion control algorithms makes it
a better choice for high-performance networking applications
where low queuing delay is essential.

V. CONCLUSION

A congestion control algorithm for fast and long-distance
FANET has been proposed, showing promising results. The
algorithm has effectively managed network congestion and
adaptability to different network scenarios in FANETs. With
the time that has passed since the previous instance of conges-
tion, the algorithm employs a quad window growth function.
This real-time technique maintains TCP friendliness for short
and long RTT routes by keeping the window expansion rate
independent of RTT. The proposed mpQUAD is compared
to mpCUBIC based on congestion window size, slow-start
threshold, throughput, and queueing delay. To accommodate
the multipath situation, mpQUAD is explored for multiple
sub flows. The experimental analysis depicts the throughput
enhancement and less queuing delays. Further, there is scope
for implementing a machine learning model to learn how to
change β according to a reward-based learning approach. This
can result in dynamic and accurate congestion control, which
would work to improve the throughput and RTT performance
in an unstable and changing network environment.

ACKNOWLEDGMENT

No funds, grants, or other support was received.

REFERENCES

[1] I. Bekmezci, O. K. Sahingoz, and Ş. Temel, “Flying ad-hoc networks
(fanets): A survey,” Ad Hoc Networks, vol. 11, no. 3, pp. 1254–1270,
2013.

[2] M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, and M. Debbah, “A
tutorial on uavs for wireless networks: Applications, challenges, and
open problems,” IEEE communications surveys & tutorials, vol. 21,
no. 3, pp. 2334–2360, 2019.

[3] M. Pakmehr, “Tcp congestion control characteristics and their impacts
in qos over mobile broadband networks,” Master’s thesis, 2014.

[4] T. Kato, S. Haruyama, R. Yamamoto, and S. Ohzahata, “mpcubic: A
cubic-like congestion control algorithm for multipath tcp,” in Trends
and Innovations in Information Systems and Technologies: Volume 2 8.
Springer, 2020, pp. 306–317.

[5] P. Dong, J. Wang, J. Huang, H. Wang, and G. Min, “Performance
enhancement of multipath tcp for wireless communications with multiple
radio interfaces,” IEEE Transactions on Communications, vol. 64, no. 8,
pp. 3456–3466, 2016.

[6] Q. Peng, A. Walid, J. Hwang, and S. H. Low, “Multipath tcp: Analysis,
design, and implementation,” IEEE/ACM Transactions on networking,
vol. 24, no. 1, pp. 596–609, 2014.

[7] M. A. Al-Absi, A. A. Al-Absi, M. Sain, and H. Lee, “Moving ad hoc
networks—a comparative study,” Sustainability, vol. 13, no. 11, p. 6187,
2021.

[8] T. A. Le, R. Haw, C. S. Hong, and S. Lee, “A multipath cubic tcp con-
gestion control with multipath fast recovery over high bandwidth-delay
product networks,” IEICE transactions on communications, vol. 95,
no. 7, pp. 2232–2244, 2012.

[9] H. M. Hijawi and M. M. Hamarsheh, “Performance analysis of multi-
path tcp network,” Int. J. Comput. Netw. Commun, vol. 8, no. 2, pp.
145–157, 2016.

[10] K. Nguyen, M. Golam Kibria, K. Ishizu, F. Kojima, and H. Sekiya,
“An approach to reinforce multipath tcp with path-aware information,”
Sensors, vol. 19, no. 3, p. 476, 2019.

[11] T. Shreedhar, D. Zeynali, O. Gasser, N. Mohan, and J. Ott, “A
longitudinal view at the adoption of multipath tcp,” arXiv preprint
arXiv:2205.12138, 2022.

[12] B. Sharma, G. Srivastava, and J. C.-W. Lin, “A bidirectional congestion
control transport protocol for the internet of drones,” Computer Com-
munications, vol. 153, pp. 102–116, 2020.

[13] S. R. Pokhrel, J. Jin, and H. Le Vu, “Mobility-aware multipath commu-
nication for unmanned aerial surveillance systems,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 6, pp. 6088–6098, 2019.

[14] R. Netravali, A. Sivaraman, K. Winstein, S. Das, A. Goyal, and
H. Balakrishnan, “Mahimahi: A lightweight toolkit for reproducible
web measurement,” ACM SIGCOMM Computer Communication Review,
vol. 44, no. 4, pp. 129–130, 2014.

[15] K. Miller and L. W. Hsiao, “Tcptuner: congestion control your way,”
arXiv preprint arXiv:1605.01987, 2016.

